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Outline 

THERMALIZATION 

Ø Thermalization of isolated quantum many-body systems occurs in the chaotic limit   
(chaotic eigenstates) 

RELAXATION PROCESS 

Ø  Dynamics and relaxation process of isolated quantum many-body systems after a QUENCH 
 
 
ENTROPY and TYPICALITY 
Ø  Entropy to describe quantum many-body systems out of equilibrium 

 

 1D: integrable  and chaotic domains 

Motivation 
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Optical lattices 

Optical lattices:   crystals formed by interfering laser beams 
                              ultracold atoms play the role of electrons in solid crystal 
 
Real solid materials are complex:  
            disorder, vibrations  of lattice, Coulomb interactions of electrons, etc 
            cannot be described by the simple theoretical models proposed. 
 
Optical lattices: can realize these simple models, very large (millions of sites) 
                          highly controllable systems – interactions, level of disorder, 1,2,3D 

             isolated  
                           

Greiner & Fölling 
Nature 453, 736 (2008) 
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Experiments in optical lattices 

Superfluid -- Mott insulator transition 
Bose-Hubbard model with repulsive interaction 

t: tunneling strength; V: interaction strength 

t>>V 

t<<V 

Greiner et al 
Nature 41, 39 (2002) 

Ø  atoms spread over 
entire lattice, 
Ø  macro wavefunction 
long-range phase 
coherence 

Ø  same number of 
atoms per site 
Ø  no phase coherence 
Ø  gap in the spectrum 

Simulation of spin 
chains 

Ø spinless bosons 
simulate a chain of 
interacting quantum Ising 
spins as they undergo a 
phase transition 

Tonks-Girardeau gas 
Ø  strong repulsive interaction 
of bosons in 1D, 
Ø  one boson per site 
 (hardcore bosons) 
Ø  resemble non-interacting 
fermions 
Ø  same spatial density 
distribution, different 
momentum distribution 

Paredes et al,  
Nature 429, 277 (2004) 

Kinoshita et al,  
Science 305, 1125 (2004) 

Simon et al,  
Nature 472, 307 (2011) 

Dynamics of spin impurity 
Fukuhara et al,  

arXiv:1209.6468 
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Optical lattices: thermalization in 1D 

Quantum Newton’s cradle: 
                           

Kinoshita et al 
Nature 440, 900 (2006) 

1D Bose gas of 87Rb (BEC) 
do not thermalize  
after thousands of collisions 

Momentum distribution 

after 600 collisions 

after 2750 collisions 

after 6250 collisions 

 
Tonks-Girardeau regime kin

int

E
E

=γ

In 3D:  
thermalization  

after 3 collisions! 

18=γ

2.3=γ

4.1=γ

1>>γ
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PART I 

THERMALIZATION 
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Thermalization in an isolated quantum system 

Quantum system 
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Time evolution of a generic observable: 

Infinite time average:  (generic system with nondegenerate and incommensurate spectrum) 

Will the system thermalize?  
Will the predictions from the diagonal ensemble coincide with   
the predictions of the microcanonical ensemble? 
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depends on the initial conditions depends only on the energy 

Quantum system: 
linear time evolution 
discrete spectrum 
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α
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Eigenstate Thermalization Hypothesis 

depends on the initial conditions depends only on the energy 

Percival’s conjecture (1973): 
uniformization of the eigenstates 
  

Berry’s conjecture (1977): 
eigenstates are random vectors 

∑
=

=
N

i
i

j
i

j c
1

)()( φψ

Equation holds for all initial states that are narrow in energy when… 

ETH: the expectation values         of few-body observables  
                  do not fluctuate for eigenstates close in energy 

ααO
Deutsch, PRA 43, 2046 (1991); 
NJP 12 075021 (2010) 
 

Srednicki, PRE 50, 888 (1994); 
JPA 29 L75 (1996) 
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Onset of chaos is associated with the onset of chaotic eigenstates 
    delocalized states; large number of uncorrelated components,   

                 described statistically; pseudo-random vectors 
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Random matrices 

Matrices filled with random numbers and respecting the symmetries of the system. 
 
Wigner in the 1950’s used random matrices to study the spectrum of nuclei 
(atoms, molecules, quantum dots) 

121 EEs −=

232 EEs −=

343 EEs −=

454 EEs −=

1E

2E
3E
4E
5E

Wigner-Dyson distribution 
       (time reversal symmetry) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

4
exp

2
)(

2sssPWD
ππ

Level repulsion  
(also in quantum billiards) 

Wigner Dyson distribution  – quantum chaos 
Quantum chaos = signatures of chaos 

Level spacing distribution 

(i) Time-reversal invariant systems with rotational symmetry  
 (or time reversal, integer spin, broken rotational symmetry):  
Hamiltonians are real and symmetric 
Gaussian Orthogonal Ensemble (GOE) 

(ii)  Systems without invariance under time reversal (atom in an external magnetic field) 
      Gaussian Unitary Ensemble (GUE) 
       Hamiltonians are Hermitian) 

(iii) Time-reversal invariant systems,  
half-integer spin, broken rotational symmetry 
 Gaussian Sympletic Ensemble (GSE) 
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Systems with few-body interactions 

Ø  Realistic systems are not described by random matrices; 
Ø  they have with few(two)-body interactions; the density of states is Gaussian; 
 

Ø  only states in the middle of the spectrum may become chaotic; 
Ø  therefore, in the chaotic limit, thermalization can occur only far from edges  

v  Shell model  (eigenstates and basis dependence – no random elements in H) 
      Zelevinsky et al, Phys. Rep. 276 85 (1996) 

Structure of the eigenstates is key to studies of thermalization 

v  Wigner banded matrices 
 
v TBRE (two-body random ensembles) 
    (introduction of a “microcanonical” partition function) 
      Flambaum & Izrailev PRE 56 5144 (1997); Izrailev cond-mat/9911297 
 

 

Brandino, De Luca, Konik, Mussardo  
PRB 85, 214435 (2012) 
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System Model 
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Crossover to chaos 

Brody distribution 

1/3 filling 
Average over k’s 

LFS & M. Rigol 
PRE  81 036206 (2010) 

1== Vt
'' Vt = L=24 

L=21 
L=18 

thermodynamic limit? 
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Integrable system:  
Poisson distribution 
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Structure of the eigenstates 
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IPR
IPR −

maximum delocalization  
chaotic states - GOE 

localization 

Mean-field basis: eigenstates of integrable system (t’=V’=0) 
                            separates regular from chaotic behavior 

Izrailev, Phys. Rep.196 299 (1990) 
Zelevinsky et al, Phys. Rep. 276 85 (1996) 
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(information) 
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Bosons: eigenstates 

Fluctuations 
increase close to  
integrable point 

 

ETH breaks down 

Middle of spectrum 

GOEmf IPRIPR →

1== Vt
'' Vt =

Chaotic region: 
IPR is a  

smooth function of E 

L=24, 8 particles, k=2 
dim=30624 

LFS & M. Rigol 
PRE  81 036206 (2010) 
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Bosons in 1D: gapped system 
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Hardcore bosons in 1D:   (clean, periodic) 

Zhuravlev et al 
PRB  86 12939 (1997) 

1/3 filling:  for V=6, V’c>2 1/2 filling: for V=1, V’c>2 

Ø  integrable – chaos transition 
Ø  chaos – localization in k-space 
Ø  gapless superfluid – gapped insulator 

1=t

Ø  thermalization in gapped system? 
Ø  rare events? 
          Birolli et al, Mussardo et al 
Brandino, De Luca, Konik, Mussardo  
          PRB 85, 214435 (2012) 
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Gapped phase and chaos 

6,1 == Vt

1/3 filling 

3' =cV

8
,24

=

=

N
L

M. Rigol & LFS 
PRA  82 011604R (2010) 

Mean-field basis: 
eigenstates of the  

integrable Hamiltonian 

Momentum-basis 

L=24 
L=21 
L=18 
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Gapped system: observables 
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Average deviation of the EEVs  
with respect to the microcanonical result: 

M. Rigol & LFS 
PRA  82 011604R (2010) 
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Quench 
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Long-time dynamics 

Average over the evolution of nine initial states selected from the eigenstates of  
the Hamiltonian with V’ini = 0,1, … 9  (except the V’ of the dynamics). 
 

Effective temperature: T=3 
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Time average = microcanonical 

Ø  Thermalization does occur in the gapped phase, it follows the validity of ETH 
 

Ø  ETH is valid in the chaotic limit, away from the edges,  
                                                      even if the ground state is an insulator 
 

Ø  As the system size increases, ETH becomes valid deeper into the insulating side. 

Ø Thermalization can happen when symmetries are mixed. 

M. Rigol & LFS 
PRA  82 011604R (2010) 

LFS & M. Rigol 
PRE 82  031130 (2010) 
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Open questions 

Ø   What happens to integrable systems? 
 They relax to an equilibrium characterized by a Generalized Gibbs Ensemble  (GGE) 
 

Instead of just the energy, the Gibbs exponent contains a linear combination of conserved 
quantities  
(for free hardcore bosons or spinless fermions, the integrals of motion = occupation of the fermionic single-particle eigenstates) 

 

Ø  How fast does the system decay to equilibrium? 
 
         Dependence on the initial state, observable 
 

         System size, regime, pre-thermalization 
 

         Gap, symmetries, disorder 
 
 

M. Rigol et al 
PRL  98 050405 (2007) 

Caux & Konik 
PRL  109 175301 (2012) 

Demler & Tsvelik 
PRB  86 115448 (2012) 
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PART II 

RELAXATION 
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1D spin-1/2 systems 
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Unperturbed part: mean-field basis 

Perturbation  

Unperturbed part:  
mean-field basis 

Perturbation  

Open boundaries 
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Energy Shell and Eigenstates 

Energy shell: 
Gaussian with variance 

∑
≠

=
mn

nmH
22 ||σ

Model 1: integrable Model 2: chaotic 

Energy shell is the density of states obtained from a matrix filled only with the off-diagonal 
elements of the perturbation     (maximal strength function, local density of states) 
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L=15 
5 spins up 

Average over 5 
eigenstates in the 

middle of the spectrum 

LFS,	  Borgonovi,	  Izrailev	  
PRL	  108,	  094102	  (2012)	  
	  

PRE	  85,	  036209	  (2012)	  
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Shannon entropy 

Model 1: integrable Model 2: chaotic 

L=15 
5 spins up 

Average over 5 
eigenstates in the 

middle of the 
spectrum 

2

1

2 ||ln|| αα
α n

D

n
n ccS ∑

=

−=

∑
=

≡ D

n
nc

IPR

1

4||

1
α

α
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PRL	  108,	  094102	  (2012)	  
PRE	  85,	  036209	  (2012)	  
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Energy Shell and Strength Functions 

Model 2: chaotic 

Average over 5 basis 
states in the middle of 

the spectrum 

Energy shell: 
Gaussian with variance 
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22 ||σ

LFS,	  Borgonovi,	  Izrailev	  
PRL	  108,	  094102	  (2012)	  
	  

PRE	  85,	  036209	  (2012)	  

Energy shell is the density of states obtained from a matrix filled only 
with the off-diagonal elements of the perturbation     (maximal strength 
function, local density of states) 
 Eigenstate mf-basis vectors 
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Model 1: integrable 
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Relaxation 

Model 1: integrable Model 2: chaotic 

L=15 
5 spins up 

2

1

2 ||ln|| αα
α n

D

n
n ccS ∑
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•  Circles: numerical data 
 
•  Solid line: semi-analytical result 

 
 
 
 
•  Dashed line:  

000
ln)( nnn MttS σ≈

∑
≠

=
mn

nmH
22 ||σ Connectivity 

Initial state: unperturbed state from the 
middle of the spectrum 
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Summary of the results for the 
relaxation process 

 
•  Integrable systems, contrary to chaotic systems:  

 eigenstates are not completely delocalized in the  energy shell 
 even though they can be very delocalized 

(larger fluctuations of delocalization measures, contradicts ETH) 
 
 
•  Strength functions (initial states) for both regimes are Gaussian and lead to 
very similar relaxation processes. 

•  Much information is obtained even before diagonalization, by studying 
the Hamiltonian matrix. 
 

LFS,	  Borgonovi,	  Izrailev	  
PRL	  108,	  094102	  (2012)	  
	  

PRE	  85,	  036209	  (2012)	  
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PART III 

ENTROPY 
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Diagonal entropy 

|)()(|)( τττρ Ψ〉〈Ψ=are the diagonal elements of  
2|| nC in the energy representation 

A. Polkovnikov 
Ann. Phys.326, 486 (2011) 

Entropy of the 
diagonal ensemble: 
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Ø  We need an entropy that can describe the new equilibrium the system will reach 
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n
n CeC n =⇒Ψ〉〈Ψ=⇒〉=〉Ψ −∑ ρτττρψτ

Ø  Diagonal entropy is a thermodynamic entropy, 
   it is determined by the energy of the system only;  
 
 
 

Ø  Entropy from a microscopic theory leads to thermodynamic relations.  
 
 

  

In the chaotic domain: 

FdxTdSdE −=x external parameter 
F:generalized force describing the 
adiabatic response of the system 

LFS, A. Polkovnikov, M. Rigol 
PRL 107, 040601 (2011) 
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Smooth part of the diagonal entropy 

gfluctuatinsmoothd SSS +=

Ø  When the distribution of                      in energy becomes smooth,  
 Sfluct   becomes negligible and  
 Ssmooth coincides with the thermodynamic entropy  Sth  

chaotic 
systems 
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System Model 
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Quench 
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 Distribution Function of Energy: Gaussian 

Integrable Chaotic 

0.2,5.0 == iniini Vt

5.0,0.2 == iniini Vt

L=24 
8 particles 

Bosons, T=4 

green dashed line: 

∑ −=
n

ininnn EEE 22 )(ρδ

LFS, A. Polkovnikov, M. Rigol 
PRL 107, 040601 (2011) 

energy variance 
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Diagonal Entropy and Chaos 

0.2,5.0 == iniini Vt

5.0,0.2 == iniini Vt

Filled: Sdiagonal 
Empty: Ssmooth 

L=24 
8 particles 

Results improve with 
temperature and system 
size 

LFS, A. Polkovnikov, M. Rigol 
PRL 107, 040601 (2011) 
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Integrable regime 

Green: SGGE 
Black: Sd 

Ø  Sd is not equivalent to the thermodynamic entropy,  
                       Sfluct/Sd does not decrease with system size (L) 

 
 
 
 
 
 
Ø  Sd does not coincide with SGGE.  

Quench: A from 4, 8, 12, 16 to 0 
Period P=5 
t=1 
1/5 filling 

L 

LFS, A. Polkovnikov, M. Rigol 
PRL 107, 040601 (2011) 

1D HCB model with NN hopping , 
an external potential, and OPEN BOUNDARIES 
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PART III.b 

TRACE OUT  
PART OF THE SYSTEM  
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Typicality 

Canonical typicality:  
Reduced density matrix of a subsystem of most pure states of many-particle systems is canonical. 
 
 

Ø  How much do we need to trace out in a finite system? 
Ø  Which quantities are more or less affected? 

Tasaki, PRL 80, 1373 (1998); 
Popescu et al, Nature Phys. 2, 754 (2006); 
Goldstein et al, PRL 96, 050403 (2006). 

Ø  Grand-canonical entropy and diagonal entropy are close after the removal of few sites.   

                        WEAK TYPICALITY 
 

Ø  The von Neumann entropy should approach the other two after tracing out many sites. 
                                   STRONG TYPICALITY 

                     additional information 

Ø  Observables: reduced density matrix, diagonal ensemble, and grand-canonical 
ensemble give similar results which improve with system size. 

What we see… 

LFS, A. Polkovnikov, M. Rigol 
PRE 86 010102(R) (2012) 
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Entropies: what to expect? 

Ø  Grand-canonical entropy: 

GC

SS
GC T

NES µ−
+Ξ= ln

Ø  Reduced von Neumann entropy = entanglement entropy 

Ø  Diagonal entropy 

∑ −=Ξ
n

TEN GCnne /)(µ
Grand-partition function 

m: chemical potential 

ES,NS: average energy and 
number of particles in the 
remaining system 

]ln[]ln[ εεε ρρρρ TrTrS SSSvN −=−≡

|| Ψ〉〈Ψ=ρ

Minimum SvN=0 
(separable states) 
 

Maximum SvN=ln D 
(D: dimension of 
smallest subsystem) 

ε+SComposite system                in a pure state 

nn
n

nndS ρρ ln∑−=

][ρρ εTrS = ][ρρε STr=

Sd counts logarithmically the 
number of energy eigenstates 
which are occupied. 
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Entropies vs Number of Sites Traced out 

integrable chaotic 

L=18; 6 particles; T=4 

00.0',' =Vt 32.0',' =Vt

Chaotic region: diagonal part of the 
density matrix of the reduced system 
in the energy eigenbasis exhibits a 
thermal structure 

R = number of 
sites traced out 
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Entropies vs system size 

integrable chaotic 

L/3 particles; T=4 

00.0',' =Vt 32.0',' =Vt

Chaotic region: the results indicate that 
in thermodynamic limit SGC and Sd 
coincide even when just one site is cut 

R =number of sites 
traced out 

LFS, M. Rigol, A. Polkovnikov 
PRE 86 010102(R) (2012) 
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Observables in the chaotic domain 

Tracing out and cutting 
off and waiting for 
equilibrium lead to the 
same results. 

T=5; R=L/3 

Is there any physical 
observable that could 
detect this extra 
information? 

∑ +−−=
ji

ji
jik bbe

L
kn

,

)(1)(
Momentum distribution function: 
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Conclusion: typicality 

Ø  From a pure state of chaotic system: 
 

 Few sites removed: diagonal entropy = canonical entropy 
 (weak typicality)  

 
 Many sites removed: von Neumann = diagonal = canonical entropy 
 (strong typicality) 

 
 Observables coincide for the three cases, irrespective of how many  
 sites are traced out. 
 (reduced density matrix contains irrelevant information) 
  
 Diagonal ensemble describes physical observables. 
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Conclusion 

Ø  Thermalization of isolated quantum many-body systems occurs  
                             in the chaotic regime away from the edges of the spectrum. 
 
Ø  Structure of eigenstates and initial state play an important role (energy shell). 
 
Ø  Diagonal entropy = thermodynamic entropy. 
    Entropy from a microscopic theory leads to thermodynamic relations. 
 
Ø  Weak typicality is enough to have thermal behavior. 
 
Ø  There are several open questions: 
     relaxation: how fast, initial state, metastable/pre-thermalization, time scale 
     integrable domain, observable, scaling analysis 

Thank	  you!	  


